Education Quality and
Accountability Office

Assessment of Reading, Writing and Mathematics:
Junior Division

Released 2009 Assessment: Mathematics
Item-Specific Rubrics and Sample Student Responses with Annotations

Scoring Guide for Junior Mathematics Open-Response Question 7

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Application of knowledge and skills to construct a pentagon given angle and side measurements shows limited effectiveness due to - misunderstanding of concepts - incorrect selection or misuse of procedures
20	Application of knowledge and skills to construct a pentagon given angle and side measurements shows some effectiveness due to - partial understanding of the concepts - errors and/or omissions in the application of the procedures
30	Application of knowledge and skills to construct a pentagon given angle and side measurements shows considerable effectiveness due to - an understanding of most of the concepts - minor errors and/or omissions in the application of the procedures
40	Application of knowledge and skills to construct a pentagon given angle and side measurements shows a high degree of effectiveness due to - a thorough understanding of the concepts - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Construct a pentagon on the grid below that meets the following conditions.

- exactly 1 line of symmetry
- 2 obtuse angles
- 2 right angles
- 1 acute angle
- at least 1 side with a length of 3 units

Draw the line of symmetry on your pentagon.

Annotation:

Student demonstrates an incorrect selection of procedures; student draws an octagon.

Construct a pentagon on the grid below that meets the following conditions.

- exactly 1 line of symmetry
- 2 obtuse angles .
- 2 right angles
- 1 acute angle
- at least 1 side with a length of 3 units

Draw the line of symmetry on your pentagon.

Annotation:

Student makes omissions in the application of procedures; students draws a pentagon however does not include 1 side of 3 units and an acute angle (more than 1 condition not met).

Construct a pentagon on the grid below that meets the following conditions.

- exactly 1 line of symmetry
- 2 obtuse angles
- 2 right angles
- 1 acute angle
- at least 1 side with a length of 3 units

Draw the line of symmetry on your dentagon.

Annotation:

Student makes minor omission in application of procedures; student draws a pentagon but does not include 1 acute angle (1 condition not met).

Construct a pentagon on the grid below that meets the following conditions.

- exactly 1 line of symmetry
- 2 obtuse angles
- 2 right angles
- 1 acute angle
- at least 1 side with a length of 3 units

Draw the line of symmetry on your pentagon.

Annotation:

Student demonstrates an accurate application of the procedures; all conditions included in the drawing.

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to determine whether the probability that Keenan will randomly choose a yellow marble increases, decreases, or stays the same shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to determine whether the probability that Keenan will randomly choose a yellow marble increases, decreases, or stays the same shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to determine whether the probability that Keenan will randomly choose a yellow marble increases, decreases, or stays the same shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to determine whether the probability that Keenan will randomly choose a yellow marble increases, decreases, or stays the same shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Scoring Guide for Junior Mathematics Open-Response Question 8

Code 10

Keenan places 3 green marbles, 4 yellow marbles and 1 blue marble in a bag.
Keenan then adds 1 green marble and 1 yellow marble to the bag.
Does the probability that Keenan will randomly choose a yellow marble increase, decrease or stay the same?

Annotation:

Student demonstrates minimal evidence of a solution process; no evidence of probability; states that a difference of 1 marble between yellow and green both before and after means the probability of choosing yellow stays the same.

Scoring Guide for Junior Mathematics Open-Response Question 8

Code 20

Keenan places 3 green marbles, 4 yellow marbles and 1 blue marble in a bag.
Keenan then adds 1 green marble and 1 yellow marble to the bag.
Does the probability that Keenan will randomly choose a yellow marble increase, decrease or stay the same?
Circle one:
Increases
Decreases
Stays the same
Justify your answer.

First there were 8 mosbles Nw these are to marbles.
By adding mare yellow marbles there is a greater
 a. flow nobel

Annotation:

Student identifies some of the important elements of the problem; starts to compare probabilities by stating total outcomes before and after but incorrectly concludes that by adding more to the yellow marbles the probability increases.

Scoring Guide for Junior Mathematics Open-Response Question 8

Code
 30

Keenan places 3 green marbles, 4 yellow marbles and 1 blue marble in a bag.
Keenan then adds 1 green marble and 1 yellow marble to the bag.
Does the probability that Keenan will randomly choose a yellow marble increase, decrease or stay the same?

Circle one:
Increases
Decreases
Stays the same

Justify your answer.
It stays the same because there are 5 yellow marbles and en different marbles, Therefor, Keenan has a,50,50 chance of pulling out a bellow marble.

Annotation:

Student makes appropriate conclusions with supporting evidence; correctly determines the probability of choosing a yellow marble after; correctly states that the probability stays the same but does not determine the probability of choosing a yellow marble before the extra marbles are added.

Scoring Guide for Junior Mathematics Open-Response Question 8

Code 40

Keenan places 3 green marbles, 4 yellow marbles and 1 blue marble in a bag.
Keenan then adds 1 green marble and 1 yellow marble to the bag.
Does the probability that Keenan will randomly choose a yellow marble increase, decrease or stay the same?

Circle one:
Stays the same

Annotation:
Student identifies all important elements of the problem; correctly compares percentage for before and after adding the marbles to justify conclusion.

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to determine the number of stages that can be completed using 50 blocks in a geometric pattern shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to determine the number of stages that can be completed using 50 blocks in a geometric pattern shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to determine the number of stages that can be completed using 50 blocks in a geometric pattern shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to determine the number of stages that can be completed using 50 blocks in a geometric pattern shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Ms. Lewis has 50 blocks. She uses 22 of these blocks to make the pattern shown below.

Stage 1

Stage 2

Stage 3

Stage 4

How many stages will Ms. Lewis be able to complete with the 50 blocks?
Justify your answer.
GO blocks
22 blocks for 4 stages 8 stages equals 44 blocks.

$$
\begin{aligned}
& \text { she will be able to } \\
& \text { make } \delta \text { stages with } \\
& \text { bo blocks eft over. }
\end{aligned}
$$

Annotation:

Student places too much emphasis on unimportant elements of the problem; doubles the information provided; does not address stages 5-8.

Code
20
Ms. Lewis has 50 blocks. She uses 22 of these blocks to make the pattern shown below.
\square
Stage 1

Stage 2

Stage 3

Stage 4

How many stages will Ms. Lewis be able to complete with the 50 blocks?

Annotation:
Student identifies some of the important elements of the problem; uses the patterning rule of "add 3 " to each stage to total 50 blocks but this is not a cumulative total.

Scoring Guide for Junior Mathematics Open-Response

 Question 9
Code 30

Ms. Lewis has 50 blocks. She uses 22 of these blocks to make the pattern shown below.

How many stages will Ms. Lewis be able to complete with the 50 blocks?
Justify your answer.

$$
\text { She mill bo able to complete } 6 \text { stages }
$$

Annotation:

Student identifies most of the important elements of the problem; extends the pattern correctly but does not acknowledge the extra block needed (51 not 50) at Stage 6 and makes an incorrect conclusion.

Scoring Guide for Junior Mathematics Open-Response Question 9

Code 40

Ms. Lewis has 50 blocks. She uses 22 of these blocks to make the pattern shown below.

How many stages will Ms. Lewis be able to complete with the 50 blocks?

Justify your answer. | Ms lewis would orty |
| :--- |
| be able to moke |
| 5 stages because |
| 6 stages would be |
| si blocks and she |
| only hus so blocks |

Annotation:

Student makes appropriate conclusion with thorough and insightful supporting evidence; correctly extends the pattern; arrives at correct conclusion and gives evidence that there are not enough blocks to create Stage 6.

Scoring Guide for Junior Mathematics Open-Response Question 10

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Application of knowledge and skills to construct a triangle and a rectangle with the same area as a parallelogram shown shows limited effectiveness due to - misunderstanding of concepts - incorrect selection or misuse of procedures
20	Application of knowledge and skills to construct a triangle and a rectangle with the same area as a parallelogram shown shows some effectiveness due to - partial understanding of the concepts - errors and/or omissions in the application of the procedures
30	Application of knowledge and skills to construct a triangle and a rectangle with the same area as a parallelogram shown shows considerable effectiveness due to - an understanding of most of the concepts - minor errors and/or omissions in the application of the procedures
40	Application of knowledge and skills to construct a triangle and a rectangle with the same area as a parallelogram shown shows a high degree of effectiveness due to - a thorough understanding of the concepts - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Determine the area of the parallelogram below.

The area of the parallelogram is 12
Draw a triangle and a rectangle each with the same area as the parallelogram. Use the grid below.

Annotation:

Student makes an incorrect selection of procedures; incorrect calculation of the area of the parallelogram (12); neither the rectangle nor the triangle have areas of 12 (appears to use perimeter).

Determine the area of the parallelogram below.

The area of the parallelogram is \qquad $8 \mathrm{~cm}^{2}$ \therefore
Draw a triangle and a rectangle each with the same area as the parallelogram. Use the grid below.

Justify your answers.
$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}=8 \mathrm{~cm}^{2}$ $3 \mathrm{cum} \times 2 \mathrm{~cm}^{3} 1 \mathrm{~cm} \times 1 \mathrm{~cm}=8 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& A=b \times h \\
& A=4 \mathrm{~cm} \times 2 \mathrm{~cm} \\
& A=8 \mathrm{~cm}^{2}
\end{aligned}
$$

Annotation:

Student makes errors in the application of the procedures; area of parallelogram correct but neither rectangle nor triangle drawn matches calculated area.

Determine the area of the parallelogram below.

The area of the parallelogram is Scanit Square
Draw a triangle and a rectangle each with the same area as the parallelogram. Use the grid below.

Justify your answers.

$$
2 \times 4=8 \text { units }^{2}
$$

Annotation:

Student demonstrates an understanding of most of the concepts; area of parallelogram accurately calculated and constructs rectangle with same area; triangle shown does not have a matching area.

Scoring Guide for Junior Mathematics Open-Response

Question 10

Code
 40

Determine the area of the parallelogram below.

The area of the parallelogram is \qquad 8 units ${ }^{2}$

Draw a triangle and a rectangle each with the same area as the parallelogram. Use the grid below.

Justify your answers.

$$
\begin{aligned}
& \text { Triangle }-b \times h \div 2=\text { ara }-1 \times 8) \div 2 \quad \text { Rectangle }-1 \times w=a<a \\
& =(2 \times 8) \div 2 \\
& =16 \mathrm{~cm}^{2} \div 2 \\
& =4 \times 2 \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
$$

Annotation:

Student demonstrates a thorough understanding of the concepts; accurately constructs a rectangle and triangle with an area of 8 square units with justification.

Scoring Guide for Junior Mathematics Open-Response Question 27

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to draw a broken-line graph and explain its appropriateness shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to draw a broken-line graph and explain its appropriateness shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to draw a broken-line graph and explain its appropriateness shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to draw a broken-line graph and explain its appropriateness shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Scoring Guide for Junior Mathematics Open-Response

Question 27
Code

The table below shows the weekly video sales at a store over a five-week period.
Videos Sold

Week	1	2	3	4	5
Number of videos sold	550	325	275	100	50

Draw a broken-line graph to represent this data. Show titles and labels on the graph.

Explain why a broken-line graph is the most appropriate graph to represent this data.
Follow number $1 \sim$ number 5 all take desend.

Annotation:

Student demonstrates limited identification of important elements of the problem; student copies numbers from table onto vertical axis; explanation is unrelated to question.

Scoring Guide for Junior Mathematics Open-Response

Question 27

Code 20

12 The table below shows the weekly video sales at a store over a five-week period.
Videos Sold

Week	1	2	3	4	5
Number of videos sold	550	325	275	100	50

Draw a broken-line graph to represent this data. Show titles and labels on the graph.

Explain why a broken-line graph is the most appropriate graph to represent this data.

$$
\begin{aligned}
& \text { when we use this graph it is very useful } \\
& \text { to see how it got different. } \\
& \text { and how many it sold. }
\end{aligned}
$$

Annotation:

Student demonstrates some understanding of the relationships between important elements of the problem; vertical scale inaccurately jumps from 350 to 550 to accommodate for range of data; points plotted accurately; explanation does not support choice of broken line graph.

Scoring Guide for Junior Mathematics Open-Response
 Question 27

Code

The table below shows the weekly video sales at a store over a five-week period.
Videos Sold

Week	1	2	3	4	5
Number of videos sold	550	325	275	100	50

Draw a broken-line graph to represent this data. Show titles and labels on the graph.

Explain why a broken-line graph is the most appropriate graph to represent this data.
because a broken-line graph best represents
buisnuss data and sales.

Annotation:

Student demonstrates a considerable understanding of the relationships between important elements of the problem; graph drawn accurately; explanation does not support idea of 'change over time'.

The table below shows the weekly video sales at a store over a five-week period.
Videos Sold

Week	1	2	3	4	5
Number of videos sold	550	325	275	100	50

Draw a broken-line graph to represent this data. Show titles and labels on the graph.

Explain why a broken-line graph is the most appropriate graph to represent this data.
A Broken- line grah is the most appropriate groinh to represent this data becaure it actually shous the change over a period of time.

Annotation:

Student demonstrates a thorough understanding of the relationships between all of the important elements of the problem; graph drawn accurately; explanation supports choice of broken line graph to represent change over time.

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to multiply and divide decimal numbers to calculate the amount of change Carmen should receive shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to multiply and divide decimal numbers to calculate the amount of change Carmen should receive shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to multiply and divide decimal numbers to calculate the amount of change Carmen should receive shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to multiply and divide decimal numbers to calculate the amount of change Carmen should receive shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Carmen wants to install a fence. Each section of fence is 2.4 metres long and costs $\$ 6.00$ per metre. Carmen will need 16 sections of fence. How much change should he receive from $\$ 250$?

Show your work.

Annotation:

Student demonstrates limited identification of important elements of the problem; does not consider 16 or $\$ 250$ in solution; multiplies incorrectly and considers what is total length to be amount of change.

Scoring Guide for Junior Mathematics Open-Response
 Question 28

Code 20

Carmen wants to install a fence. Each section of fence is 2.4 metres long and costs $\$ 6.00$ per metre.

Annotation:

Student demonstrates some understanding of the relationships between important elements of the problem; incorrectly determines total cost (misunderstands \$6 as cost per section); accurately determines amount of change based on their total cost.

Code
30
Carmen wants to install a fence. Each section of fence is 2.4 metres long and costs $\$ 6.00$ per metre. Carmen will need 16 sections of fence. How much change should he receive from $\$ 250$?

Show your work.

$$
2,4 \times 16=38,4 \mathrm{~m}
$$

Annotation:
Student demonstrates a solution process that is nearly complete; accurately calculates total length and total cost; does not complete problem by determining amount of change.

Code 40

Carmen wants to install a fence. Each section of fence is 2.4 metres long and costs $\$ 6.00$ per metre. Carmen will need 16 sections of fence. How much change should he receive from $\$ 250$?

Annotation:
Student demonstrates a thorough understanding of the relationships between all of the important elements of the problem; accurately calculates total length, total cost, and amount of change.

Scoring Guide for Junior Mathematics Open-Response Question 29

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to compare and represent fractional amounts shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to compare and represent fractional amounts shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to compare and represent fractional amounts shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to compare and represent fractional amounts shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Consider the fractions $\frac{3}{2}$ and $1 \frac{3}{4}$.

- Which of these fractions is larger?

$$
\begin{aligned}
& \text { Justify your answer } \\
& \text { I Hind } 1 \frac{3}{4} \text { is larger because } 1 \frac{3}{4} \text { is bigger } \\
& \text { number }
\end{aligned}
$$

The larger fraction is \qquad $1 \frac{3}{4}$

- Find a fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Justify your answer
numbers are $\frac{T}{3}$. think it $\frac{3}{3}$ because the top
A fraction between $\frac{3}{2}$ and $\frac{13}{4}$ is $\frac{\frac{3}{3}}{}$

Annotation:

Student demonstrates limited identification of important elements of the problem; chooses larger fraction with no process shown; chooses an inappropriate fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$ with inappropriate justification. Question 29

Code 20

Consider the fractions $\frac{3}{2}$ and $1 \frac{3}{4}$.

- Which of these fractions is larger?

Justify your answer.
The fraction thatis larger is $13 / 4$ because: $2 \times \frac{1}{3}, 1 \frac{1}{2}$ is smaller $-\frac{2}{1}$ then $13 / 4$. or

The larger fraction is
 .

- Find a fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Justify your answer.

$$
\begin{aligned}
& \frac{-2}{1}
\end{aligned} 1 \frac{1}{2} \text { and } 13 / 4
$$

The number between the
2 is $1 \frac{2}{3}$ bearase the
numerator 151 and 3 so it will
$=2$ and the denomitator i's
A fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$ is \qquad 123

Annotation:
Student demonstrates some understanding of the relationships between important elements of the problem; chooses larger fraction with some process; correctly converts $\frac{3}{2}$ to a mixed fraction; chooses appropriate in between fraction but justification gives evidence of misunderstanding (chooses number between numerators and number between denominators and expresses these as a fraction).

Scoring Guide for Junior Mathematics Open-Response Question 29

Code 30

Consider the fractions $\frac{3}{2}$ and $1 \frac{3}{4}$.

- Which of these fractions is larger?

Justify your answer.
I say that $1 \frac{3}{4}$ is bigger because both fractions are different fraction. The is improper ard theother is mixed fraction. So what I did was I changed $1 \frac{3}{4}$ into a improper fradion. Since $\frac{3}{2}$ didnst have same denominator I changed $\frac{3}{2}$ to $\frac{5}{4} \cdot$ SO $\frac{6}{4}$ is less than if. $1 \frac{2}{4}=\frac{5}{4}$ and $1 \frac{3}{4}=\frac{7}{4}$?
The larger fraction is \qquad $1 \frac{3}{4}$

$$
\frac{3 \times 2}{2 \times 2}=\frac{6}{4}=\frac{2}{4}+\frac{3}{4}=\frac{7}{4}
$$

- Find a fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Justify your answer.
I say that $\frac{6.5}{4}$ is the mid way point because between 6 and 7 is 6.5 so the fraction would be $\frac{6.5}{4}$

A fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$ is \qquad 6.5

Annotation:
Student demonstrates a solution process that is nearly complete; uses common denominator to justify $1 \frac{3}{4}$ as being larger; uses common denominators to choose $\frac{6.5}{4}$ but leaves answer in a decimal-fraction form.

Consider the fractions $\frac{3}{2}$ and $1 \frac{3}{4}$.

- Which of these fractions is larger?

- Find a fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Justify your answer.

$$
\left.\frac{3 \times 2}{2 \times 2} \right\rvert\, \frac{3 x^{1}}{4 x 1}
$$

$\frac{12}{8} \frac{14}{8} \cdot \frac{18}{8}$
A fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$ is $\frac{13}{8}$.

Annotation:

Student demonstrates a thorough understanding of the relationships between important elements of the problem; uses diagram with common unit to support choice of $1 \frac{3}{4}$; common denominator used to choose fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Scoring Guide for Junior Mathematics Open-Response Question 30

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Application of knowledge and skills to plot a parallelogram on a grid given points and then perform a rotation counter-clockwise shows limited effectiveness due to - misunderstanding of concepts - incorrect selection or misuse of procedures
20	Application of knowledge and skills to plot a parallelogram on a grid given points and then perform a rotation counter-clockwise shows some effectiveness due to - partial understanding of the concepts - errors and/or omissions in the application of the procedures
30	Application of knowledge and skills to plot a parallelogram on a grid given points and then perform a rotation counter-clockwise shows considerable effectiveness due to - an understanding of most of the concepts - minor errors and/or omissions in the application of the procedures
40	Application of knowledge and skills to plot a parallelogram on a grid given points and then perform a rotation counter-clockwise shows a high degree of effectiveness due to - a thorough understanding of the concepts - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Scoring Guide for Junior Mathematics Open-Response

Question 30
Code

Plot and label the following points to form parallelogram PQRS on the grid below.
P $(9,12)$
Q $(9,8)$
R $(7,6)$
S $(7,10)$

Rotate parallelogram PQRS 90° counter-clockwise about point R . Draw the new parallelogram on the grid above.

Annotation:

Student demonstrates a misuse of procedures; plots parallelogram PQRS incorrectly (reverses co-ordinates); all image points are incorrect (image is the result of a translation).

Plot and label the following points to form parallelogram PQRS on the grid below.
P(9, 12)
Q $(9,8)$
R $(7,6)$
S $(7,10)$

Rotate parallelogram PQRS 90° counter-clockwise about point R. Draw the new parallelogram on the grid above.

Annotation:

Student demonstrates a partial understanding of the concepts; plots parallelogram PQRS correctly; image points P, Q and S are incorrect.

Scoring Guide for Junior Mathematics Open-Response

Question 30
Code

Plot and label the following points to form parallelogram PQRS on the grid below.
P $(9,12)$
Q $(9,8)$
R $(7,6)$
S $(7,10)$

Rotate parallelogram PQRS 90° counter-clockwise about point R. Draw the new parallelogram on the grid above.

Annotation:

Student demonstrates an understanding of most of the concepts; plots parallelogram PQRS correctly; image is result of a 90° clockwise rotation.

Plot and label the following points to form parallelogram PQRS on the grid below.
P $(9,12)$
Q $(9,8)$
R $(7,6)$
S $(7,10)$

Rotate parallelogram PQRS 90° counter-clockwise about point R. Draw the new parallelogram on the
grid above. grid above.

Annotation:

Student demonstrates an accurate application of the procedures; plots and rotates parallelogram PQRS correctly.

