Question 27

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
1	- Illegible: cannot be read; completely crossed out / erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to solve problems that use two or three symbols or letters as variables to represent different unknown quantities shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to solve problems that use two or three symbols or letters as variables to represent different unknown quantities shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to solve problems that use two or three symbols or letters as variables to represent different unknown quantities shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to solve problems that use two or three symbols or letters as variables to represent different unknown quantities shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

10

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has 13 Q coins and Tom has 5 Q coins and 7 E coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Show your work.

The value of the Q coin is

The value of the E coin is \qquad 2* .

Rationale: Student demonstrates minimal evidence of a solution process and limited identification of important elements of the problem; makes an attempt at solving for Q but arrives at an unreasonable answer.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 27

20

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has $13 Q$ coins and Tom has $5 Q$ coins and $7 E$ coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Show your work.

$$
\begin{aligned}
& \text { Jennifer }-\$ 0.65 \div 13=0.05 \\
& \text { Tom } \$ 3.75 \div 5=0.75 \\
& 5+7=12 \$ 3.75 \div 7=0.5357142857 \\
& \$-0.75 \div 12=0.3125 \\
& Q-0.05 \\
& E-0.5357142857
\end{aligned}
$$

The value of the Q coin is 0.05
The value of the E coin is 0.5357142857

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has $13 Q$ coins and Tom has $5 Q$ coins and $7 E$ coins. If . Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Rationale: Student demonstrates some understanding of the relationships between important elements of the problem; provides a correct solution for "Q" but does not determine the value of coins "E".

30

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has 13 Q coins and Tom has 5 Q coins and 7 E coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Show your work.

1

The value of the Q coin is

The value of the E coin is \qquad .

Rationale: Student demonstrates a considerable understanding of the relationships between important elements of the problem; utilizes an appropriate problem solving process to determine the value of the coins but makes a minor calculation error (4Φ for the " Q " coins) and follows through with the error.

30

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has $13 Q$ coins and Tom has $5 Q$ coins and $7 E$ coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Show your work.
 $7 \frac{0.50}{\frac{3.50}{3}} \begin{aligned} & 00\end{aligned}$.

The value of the Q coin is $\$ 0.05$

The value of the E coin is \qquad

Rationale: Student provides a solution process that is nearly complete and identifies the relationship between important elements of the problem; arrives at an accurate solution but does not show the use of $\$ 3.75$ (e.g., $5 \times 0.5=0.25$ and $\$ 3.75-0.25=\$ 3.50$).

When Jennifer and Tom visit another country, they find two types of coins are used there, one with a Q on it and one with an E on it. Jennifer has $13 Q$ coins and Tom has 5 Q coins and 7 E coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Rationale: Student identifies all of the important elements of the problem and provides a complete solution process; provides an appropriate conclusion with thorough and insightful supporting evidence.

40

When Jennifer and Tom visit another country, they find two types of coins are used there; one with a Q on it and one with an E on it. Jennifer has $13 Q$ coins and Tom has $5 Q$ coins and $7 E$ coins. If Jennifer's coins have a total value of $\$ 0.65$ and Tom's coins have a total value of $\$ 3.75$, what is the value of each type of coin?

Show your work.
Qaind. Ecoins
$13 Q$ coins $=\$ 0.65$
56 coins $+7 E$ coins $=\$ 3.75$ 5Qcoins $=0,25$
50. $65 \div 13=14005$

So $\$ 3,50 \div 7=\$ 0.5$

The value of the Q coin is $\$ 0,05$.
The value of the E coin is $\$ 0.5^{\circ}$.

Rationale: Student demonstrates a thorough understanding of the relationship between all important elements of the problem; accurately solves the value of the Q coins and provides an accurate solution for the E coins. Minor omission of $\$ 3.75-0.25=\$ 3.50$.

Question 28

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out / erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to demonstrate an understanding of mean and to use the mean to compare two sets of related data shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to demonstrate an understanding of mean and to use the mean to compare two sets of related data shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to demonstrate an understanding of mean and to use the mean to compare two sets of related data shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to demonstrate an understanding of mean and to use the mean to compare two sets of related data shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

10

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.
$160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}$
The mean height of the starting lineup is 152.4 cm . What is Kyla's height?

Show your work.

$$
152.4+4=38.1
$$

Kyla's height is \qquad .

Rationale: Student demonstrates limited identification of important elements of the problem; divides the given mean by the number of players given in the problem resulting in an unreasonable solution.

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.

$$
160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}
$$

The Aftaidheight of the starting lineup is 152.4 cm . What is Kyla's height?

Show your work.

$$
\begin{aligned}
& \text { Show your work. } 2.4 \mathrm{~cm} \\
& m \text { Mean }=15 \mathrm{~cm}=11 \mathrm{~cm} \div 4= \\
& 160.156 \mathrm{~cm}+14 \mathrm{cin}+147 \mathrm{~cm}=6
\end{aligned}
$$

$$
152.75 \mathrm{~cm}
$$

Kyla's height is \qquad 152.75 cm

Rationale: Student identifies some of the important elements of the problem; adds given heights and divides by number of players given but does not relate/recognize results of 152.75 to 152.4 as the given mean.

20

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.
$160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}$
The mean height of the starting lineup is 152.4 cm . What is Kyla's height?
Show your work.

Hyla's height is 122.2 cm.

Rationale: Student demonstrates some understanding of the relationship between important elements of the problem; acknowledges " 5 " students and shows some understanding of mean by adding given heights and then dividing by 5.

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.

$$
160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}
$$

The mean height of the starting lineup is 152.4 cm . What is Kyla's height?

Show your work.

Rationale: Student demonstrates a considerable understanding of the relationships between important elements of the problem; inserts 151 and shows that this total result in the given mean by dividing by 5 but no evidence of where 151 comes from.

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.
$160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}$
The mean height of the starting lineup is 152.4 cm . What is Kyla's height?

Rationale: Student demonstrates a considerable understanding of the relationships between the important elements of the problem; no evidence where the 151 came from.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 28

40

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.

$$
160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}
$$

The mean height of the starting lineup is 152.4 cm . What is Kyla's height?

Show your work.
I know.

- The thanks of the other players are $160 \mathrm{~cm}, 14 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}$
- The mean height of the lineup is 152.4 cm How much she's height?

$$
\begin{array}{r}
160 \\
148 \\
148 \\
+147 \\
\hline 611 \mathrm{~cm}
\end{array}
$$

$$
\begin{aligned}
& -762 \\
& -611 \\
& \hline 151 \mathrm{~cm}
\end{aligned}
$$

Kyla's height is \qquad 1510 m . Kayla.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 28

40

Kyla is a member of the starting lineup of the school's basketball team. The heights of the other starting players are shown below.

$$
160 \mathrm{~cm}, 156 \mathrm{~cm}, 148 \mathrm{~cm}, 147 \mathrm{~cm}
$$

The mean height of the starting lineup is 152.4 cm . What is Kyla's height?

Rationale: Student demonstrates a complete solution process; uses guess and check to arrive at the correct height for Kayla.

Question 29

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
1	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Application of knowledge and skills to represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers shows limited effectiveness due to - misunderstanding of concepts - incorrect selection or misuse of procedures
20	Application of knowledge and skills to represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers shows some effectiveness due to - partial understanding of the concepts - errors and/or omissions in the application of the procedures
30	Application of knowledge and skills to represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers shows considerable effectiveness due to - an understanding of most of the concepts - minor errors and/or omissions in the application of the procedures
40	Application of knowledge and skills to represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers shows a high degree of effectiveness due to - a thorough understanding of the concepts - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response

Question 29

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Explain your thinking. $\frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{5}$
I think it is this way because starting from the top makes more sense.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 29

20

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Explain your thinking.

(2) $150 \% 33.3 \% 25 \% 20 \%$
(3) $\frac{4}{5}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}$

Rationale: Student demonstrates a partial understanding of the concepts with errors in the application of the procedures; converts fractions to percents incorrectly and orders them inaccurately based on their work.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 29

20

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Rationale: Student demonstrates a partial understanding of the concepts with omissions in the application of the procedures; does not provide supporting evidence as to why $1 / 4$ is the smallest and $3 / 2$ is the biggest or for the remaining order.

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Explain your thinking.

$$
\frac{1}{4}, \frac{2}{3}, \frac{4}{5}, \frac{3}{2}
$$

I know that $\frac{3}{2}$ is the biggest because the higher number if on top and $\frac{1}{4}$ half is the smallest from diagram \uparrow At the topis a diagram.

30

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Rationale: Student demonstrates an understanding of most of the concepts with minor errors in the application of the procedures; the illustrations correctly represent the fractions, but they are unable to use them to accurately order the fractions.

Question 29
40

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Write the following fractions in order from least to greatest.

$$
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
$$

Explain your thinking.		$1 / 4$	$2 / 3$	$4 / 5$	$3 / 2$.
$3 / 2=3 \div 2=1.5$	4.				
$2 / 3=2 \div 3-0.67$	2				
$1 / 4=1 \div 4=0.25$	1				
$4 / 5=4 \div 5=0.8 .0$	3				

Question 30

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out / erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90° or 180° shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90° or 180° shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90° or 180° shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90° or 180° shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

The drawing below shows a grid with $\triangle \mathrm{ABC}$, Line 1 and Line 2 . On the grid, reflect $\triangle \mathrm{ABC}$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

Rationale: Student demonstrates minimal evidence of a solution process; unable to recreate scalene triangle and does not complete drawings according to instructions.

10

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2 . On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.
If id did a rotation to make tings reflectipe
if would be a 190° of a rotation.

Rationale: Student provides limited identification of important elements of the problem; completes first step of transformation drawing first reflected triangle, but does not complete second reflection. The rotation identified will not result in the drawing.

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2 . On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.
Another rotation that would have the same result as these two reflections is to flip $\triangle A B C$ on line 1 on point C. Then slide down $\triangle A B C$ two rows and flip it on line C, and A.

20

The drawing below shows a grid with $\triangle \mathrm{ABC}$, Line 1 and Line 2 . On the grid, reflect $\triangle \mathrm{ABC}$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

$$
\begin{aligned}
& \text { I would have to rotate the triangle } \\
& 4 \text { times for both reflections of Linel } \\
& \text { and Line } 2 \text {. }
\end{aligned}
$$

Rationale: Student identified some of the important elements of the problem; makes two reflections but one of the reflections is inaccurate. Stated rotation is incorrect.

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2. On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

$$
0=\text { rotation point }
$$

Rationale: Student provides a solution process that is nearly complete; accurate reflections and identifies the rotation point $(6,5)$ but not the 180° rotation either clockwise or counterclockwise.

30

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2. On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

Rationale: Student provides a solution process that is nearly complete; identifies the rotation required $11 / 2$ turn either CW or CCW but not the point of rotation.

30

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2 . On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

$$
\text { rotate } 180^{\circ} \text { clockwise turn centre }(6,6) \text { slide down } 256
$$

Rationale: Student identifies most of the important elements of the problem; reflections are correct and names angle of rotation but incorrectly identifies point of rotation as $(6,6)$ instead of $(6,5)$. Uses a 2 step transformation.

The drawing below shows a grid with $\triangle A B C$, Line 1 and Line 2 . On the grid, reflect $\triangle A B C$ across Line 1 and then reflect the new triangle across Line 2.

Describe a rotation that would have the same result as these two reflections.

$$
\begin{aligned}
& \text { You rotate the first figure } \\
& \text { one-hundred eighty degrees } \\
& \text { clockwise on about }(6,5) \text {. }
\end{aligned}
$$

