Question 7

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out / erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to predict the frequency of an outcome of a simple probability experiment or game, by calculating and using the theoretical probability of that outcome shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to predict the frequency of an outcome of a simple probability experiment or game, by calculating and using the theoretical probability of that outcome shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to predict the frequency of an outcome of a simple probability experiment or game, by calculating and using the theoretical probability of that outcome shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to predict the frequency of an outcome of a simple probability experiment or game, by calculating and using the theoretical probability of that outcome shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Lori has a bag of 24 gumballs. She takes 8 gumballs from the bag without looking. The colours of the 8 gumballs Lori takes from the bag are 4 red, 3 blue and 1 yellow.
Using the colours of the gumballs Lori takes from the bag, predict how many gumballs of each colour were in the bag to start.

Explain your thinking. think Lori has $9 \mathrm{red}, 6$ blue and 5 yellow, because it all adds up evenly.

Rationale: Student demonstrates minimal evidence of a solution process; understands the concept of relative number of gumballs but does not take into consideration the total number of gumballs.

Lori has a bag of 24 gumballs. She takes 8 gumballs from the bag without looking. The colours of the 8 gumballs Lori takes from the bag are 4 red, 3 blue and 1 yellow.
Using the colours of the gumballs Lori takes from the bag, predict how many gumballs of each colour were in the bag to start.

Explain your thinking.

> I predict that there are 8 of each colour becacise there are 3 colours and 24 gumballs. I h now that $8 \times 3=24$ that is why I predicted 8 .

Rationale: Student identifies some of the important elements of the problem; divides 24 gumballs equally to show proportionality but demonstrates an incomplete solution process.

Lori has a bag of 24 gumballs. She takes 8 gumballs from the bag without looking. The colours of the 8 gumballs Lori takes from the bag are 4 red, 3 blue and 1 yellow.
Using the colours of the gumballs Lori takes from the bag, predict how many gumballs of each colour were in the bag to start.

Explain your thinking.

 witch lumbers cone

Rationale: Student demonstrates some understanding of the relationships between important elements of the problem; chooses numbers that total 24 and orders the colours correctly but does not provide explanation for the numbers or demonstrate proportionality.

Lori has a bag of 24 gumballs. She takes 8 gumballs from the bag without looking. The colours of the 8 gumballs Lori takes from the bag are 4 red, 3 blue and I yellow.
Using the colours of the gumballs Lori takes from the bag, predict how many gumballs of each colour were in the bag to start.

Explain your thinking.

$$
\begin{aligned}
& 4 \times 3=12 \text { red } \\
& 3 \times 3=9 \text { blue } \\
& 1 \times 3=3 \text { yellow }
\end{aligned}
$$

Rationale: Student provides a solution process that is nearly complete; does not explain where the multiplier 3 comes from but solution does show proportionality and relative numbers that total 24.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 7

40

Lori has a bag of 24 gumballs. She takes 8 gumballs from the bag without looking. The colours of the 8 gumballs Lori takes from the bag are 4 red, 3 blue and 1 yellow.
Using the colours of the gumballs Lori takes from the bag, predict how many gumballs of each colour were in the bag to start.

Explain your thinking.
$8 \longdiv { 3 4 }$
$\frac{24}{0}$ $4 \times 3=12$
$3 \times 3=9$
$1 \times 3=3$

12 reds,
9 blue,
3 yellow

Question 8

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
1	- Illegible: cannot be read; completely crossed out / erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to represent relationships using unit rates shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to represent relationships using unit rates shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to represent relationships using unit rates shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to represent relationships using unit rates shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

10

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
- Store C sells 15 pencils for $\$ 0.55$.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Explain your answer.
I know this because store A has
more pencils in the package and
has the best price, because For store Bey ou'll have to buy to pay more. there for You have

Store \qquad has the lowest price for pencils.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

20

A school needs to buy 2400 pencils. The prices for pencils at $\mathbf{3}$ stores are shown below.

- Store A sells $\mathbf{6 0}$ pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
* Store C sells 15 pencils for $\$ 0.55$.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Explain your answer.

Store \qquad has the lowest price for pencils.

Rationale: Student provides an incomplete solution; completes an accurate calculation for the cost of pencils for one store only and reaches a simple conclusion with little supporting evidence.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

20

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store -B sells 30 pencils for $\$ 0.99$.
- Store C sells 15 pencils for $\$ 0.55$.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Explain your answer.

Store C sols 15 pencils in a pack so you
need to buy 160 pack's for. 15 pack for 8.254

Store has the lowest price for pencils.

Rationale: Student provides an incomplete solution process; for store C, identifies the number of packages needed to make 2400 without recording calculations. Reaches a simple conclusion with little supporting evidence.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

30

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
- Store C sells 15 pencils for $\$ 0.55$.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Store \qquad
\qquad has the lowest price for pencils.

Rationale: Student provides a solution process that is nearly complete; identifies number of packages needed for 2400 pencils, but does not use this strategy to choose store A. Does not show how they have calculated unit rate (cost per pencil) or give a reason for choosing store A.

30

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
- Store C sells 15 pencils for \$0.55.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Rationale: Student demonstrates a considerable understanding of the relationships between important elements of the problem; identifies number of packages needed for 2400 pencils. Utilizes a correct process to determine the total cost for 2400 pencils; however, error in placement of decimal place leads to an unreasonable total cost.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

$$
40
$$

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
- Store C sells 15 pencils for \$0.55.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Rationale: Student demonstrates a thorough understanding of the relationships between all of the important elements of the problem and provides an appropriate conclusion with thorough and insightful supporting evidence; successfully represents relationships using unit rates (cost per pencil).

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 8

40

A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $\$ 1.80$.
- Store B sells 30 pencils for $\$ 0.99$.
* Store C sells 15 pencils for \$0.55.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Store \qquad has the lowest price for pencils.

Rationale: Student demonstrates a complete solution process and identifies all important elements of the problem; identifies the number of packages needed to make 2400 and utilizes a correct process to determine the cost for 2400 pencils. Minor calculation error for store B does not detract from a complete understanding of the relationship between important elements of the problem (should be $\$ 79.20$ instead of $\$ 80.81$)

Question 9

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
I	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Application of knowledge and skills to construct polygons given angle and side measurements shows limited effectiveness due to - misunderstanding of concepts - incorrect selection or misuse of procedures
20	Application of knowledge and skills to construct polygons given angle and side measurements shows some effectiveness due to - partial understanding of the concepts - errors and/or omissions in the application of the procedures
30	Application of knowledge and skills to construct polygons given angle and side measurements shows considerable effectiveness due to - an understanding of most of the concepts - minor errors and/or omissions in the application of the procedures
40	Application of knowledge and skills to construct polygons given angle and side measurements shows a high degree of effectiveness due to - a thorough understanding of the concepts - an accurate application of the procedures (any minor errors and/or omissions do not detract from the demonstration of a thorough understanding)

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angles.

Rationale: The student demonstrates a misunderstanding of concepts; draws a 5 sided figure with a 5 cm side measure and a right angle.

20

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angles.

Rationale: The student demonstrates a partial understanding of the concepts and makes errors in the application of the procedures; draws a quadrilateral (not a trapezoid) with a 90° angle and a 5 cm side measure.

20

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angles.

Show your work.

Rationale: Student demonstrates a partial understanding of the concepts and makes errors in the application of the procedures; construct a trapezoid with a 5 cm side. Does not measure angles correctly or include 90° angles.

Question 9
30

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angeles. *

Show your work.

Rationale: The student demonstrates a considerable understanding of most of the concepts with minor errors; draws a trapezoid with 90° and 5 cm side measure; however, measures the two non 90° incorrectly $\left(44^{\circ}+129^{\circ}=173^{\circ}\right.$ - out by $\left.7^{\circ}\right)\left(>5^{\circ}\right.$ allowed $)$

30

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angles.

Show your work.

Rationale: The student demonstrates a considerable understanding of most of the concepts with minor omissions; draws a trapezoid with a 90° angle and a 5 cm side measure but does not measure and label the angles.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 9

40

Using a ruler and protractor, draw a right trapezoid with a side measure of 5 cm . Measure and label all angles.

Rationale: The student demonstrates a thorough understanding of the concepts and an accurate application of the procedures; the angle measurements are within a 5° variance $\left(124^{\circ}+52^{\circ}=176^{\circ}\right.$, a difference of $\left.5^{\circ}\right)$.

Question 10

Code	Descriptor
B	- Blank: nothing written or drawn in response to the question
1	- Illegible: cannot be read; completely crossed out/erased; not written in English - Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, "?", "!", "I don't know") - Off topic: no relationship of written work to the question
10	Problem-solving process to solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms shows limited effectiveness due to - minimal evidence of a solution process - limited identification of important elements of the problem - too much emphasis on unimportant elements of the problem - no conclusions presented - conclusion presented without supporting evidence
20	Problem-solving process to solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms shows some effectiveness due to - an incomplete solution process - identification of some of the important elements of the problem - some understanding of the relationships between important elements of the problem - simple conclusions with little supporting evidence
30	Problem-solving process to solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms shows considerable effectiveness due to - a solution process that is nearly complete - identification of most of the important elements of the problem - a considerable understanding of the relationships between important elements of the problem - appropriate conclusions with supporting evidence
40	Problem-solving process to solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms shows a high degree of effectiveness due to - a complete solution process - identification of all important elements of the problem - a thorough understanding of the relationships between all of the important elements of the problem - appropriate conclusions with thorough and insightful supporting evidence

10

Jude's fish tank, shown below, holds $100000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into, the tank so that the water is 5 cm below the top?

Show your work.
$40 \mathrm{~cm} \times 1 \mathrm{~m}=10000 \mathrm{~cm}^{3}$
$35 \mathrm{~cm} \times 1 \mathrm{~m}=95,995 \mathrm{~cm}^{3}$
Jude needs to pour $95,995 \mathrm{~cm}^{3}$ of water in the tank so that the water is 5 cm below the top.

20

Jude's fish tank, shown below, holds $100000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into the tank so that the water is 5 cm below the top?

Show your work.

$$
\begin{aligned}
& \text { (1) } 1 \mathrm{~cm}^{3}=1 \mathrm{~mL} \text { (2) } 100,000 \mathrm{~cm}^{3}=100,000 \mathrm{~mL} \div 5 \mathrm{~cm}=20,008 \\
& \begin{array}{l}
\text { (3) } 100,000 \mathrm{~mL}-20,000 \mathrm{~mL}=80,000 \\
\\
80,000 \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

Rationale: Student provides a solution process that shows some understanding of the relationship between important elements of the problem; determines missing volume by an inappropriate strategy but correctly subtracts this volume from total.

20

Jude's fish tank, shown below, holds $100,000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into the tank so that the water is 5 cm below the top?
Show your work.

$$
40 \times 100=400 \mathrm{~cm}^{3}
$$

Jude will need $3975 \mathrm{~cm}^{3}$ of cod
to fill the tank $S \mathrm{~cm}^{3}$ below the
top.

Rationale: Student demonstrates a solution process that shows some understanding of the relationships between important elements of the problem; converts units (m to cm) and finds the area of the base but cannot use the information to determine the missing height or the new volume of the fish tank.

Assessments of Reading, Writing and Mathematics, Junior Division Anchor Set and Rationales for Mathematics Open-Response Question 10

30

Jude's fish tank, shown below, holds $100000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into the tank so that the water is 5 cm below the top?
Show your work.

Rationale: Student demonstrates a solution process that is nearly complete; verifies that a height of 25 cm will result in a volume of 100000 cm 3 ; determines that the new height is 20 cm but chooses an incorrect procedure to calculate the new volume.

30

Jude's fish tank, shown below, holds $100000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into the tank so that the water is 5 cm below the top?

Show your work.

WN = water

He needs to pour $80000 \mathrm{~cm}^{3}$.

Rationale: Student demonstrates a solution process that is nearly complete; determines the new volume of the fish tank but does not show how they have determined the height.

40

Jude's fish tank, shown below, holds $100000 \mathrm{~cm}^{3}$ of water when full. Jude decides to pour in water to a height of 5 cm below the top of the tank.

How much water, in cm^{3}, will Jude need to pour into the tank so that the water is 5 cm below the top?

Show your work.
$1 \mathrm{~m}=100 \mathrm{~cm}$
$40 \times 100=4000 \mathrm{~cm}$
$100000 \div 4000=25$
$40 \times 100 \times 20=80000 \mathrm{~cm}^{3}$

Rationale: Student demonstrates a complete solution process; determines the height of the fish tank and recalculates the required volume.

